NAG C Library Function Document nag zgebak (f08nwc)

1 Purpose

nag_zgebak (f08nwc) transforms eigenvectors of a balanced matrix to those of the original complex general matrix.

2 Specification

3 Description

nag_zgebak (f08nwc) is intended to be used after a complex general matrix A has been balanced by nag zgebal (f08nvc), and eigenvectors of the balanced matrix A''_{22} have subsequently been computed.

For a description of balancing, see the document for nag_zgebal (f08nvc). The balanced matrix A'' is obtained as $A'' = DPAP^TD^{-1}$, where P is a permutation matrix and D is a diagonal scaling matrix. This function transforms left or right eigenvectors as follows:

if x is a right eigenvector of A'', $P^TD^{-1}x$ is a right eigenvector of A; if y is a left eigenvector of A'', P^TDy is a left eigenvector of A;

4 References

None.

5 Parameters

1: **order** – Nag_OrderType

Input

On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order** = **Nag_RowMajor**. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: **job** – Nag JobType

Input

On entry: this **must** be the same parameter **job** as supplied to nag zgebal (f08nvc).

Constraint: job = Nag_DoNothing, Nag_Permute, Nag_Scale or Nag_DoBoth.

3: **side** – Nag SideType

Input

On entry: indicates whether left or right eigenvectors are to be transformed, as follows:

if **side** = **Nag_LeftSide**, left eigenvectors are transformed;

if **side** = **Nag_RightSide**, right eigenvectors are transformed.

Constraint: side = Nag_LeftSide or Nag_RightSide.

[NP3645/7] f08nwc.1

4: \mathbf{n} - Integer Input

On entry: n, the number of rows of the matrix of eigenvectors.

Constraint: $\mathbf{n} \geq 0$.

5: **ilo** – Integer Input

6: **ihi** – Integer Input

On entry: the values i_{lo} and i_{hi} , as returned by nag_zgebal (f08nvc).

Constraints:

if
$$\mathbf{n} > 0$$
, $1 \le \mathbf{ilo} \le \mathbf{ihi} \le \mathbf{n}$;
if $\mathbf{n} = 0$, $\mathbf{ilo} = 1$ and $\mathbf{ihi} = 0$.

7: $\mathbf{scale}[dim] - \mathbf{const} \ \mathbf{double}$

Input

Note: the dimension, dim, of the array scale must be at least max $(1, \mathbf{n})$.

On entry: details of the permutations and/or the scaling factors used to balance the original complex general matrix, as returned by nag zgebal (f08nvc).

8: \mathbf{m} - Integer Input

On entry: m, the number of columns of the matrix of eigenvectors.

Constraint: $\mathbf{m} \geq 0$.

9: $\mathbf{v}[dim]$ – Complex Input/Output

Note: the dimension, dim, of the array \mathbf{v} must be at least $\max(1, \mathbf{pdv} \times \mathbf{m})$ when $\mathbf{order} = \mathbf{Nag} \cdot \mathbf{ColMajor}$ and at least $\max(1, \mathbf{pdv} \times \mathbf{n})$ when $\mathbf{order} = \mathbf{Nag} \cdot \mathbf{RowMajor}$.

If **order** = **Nag_ColMajor**, the (i, j)th element of the matrix V is stored in $\mathbf{v}[(j-1) \times \mathbf{pdv} + i - 1]$ and if **order** = **Nag_RowMajor**, the (i, j)th element of the matrix V is stored in $\mathbf{v}[(i-1) \times \mathbf{pdv} + j - 1]$.

On entry: the matrix of left or right eigenvectors to be transformed.

On exit: the transformed eigenvectors.

10: **pdv** – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array \mathbf{v} .

Constraints:

```
if order = Nag_ColMajor, pdv \geq \max(1, \mathbf{n}); if order = Nag_RowMajor, pdv \geq \max(1, \mathbf{m}).
```

11: **fail** – NagError *

Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE INT

```
On entry, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{n} \geq 0.
On entry, \mathbf{m} = \langle value \rangle.
Constraint: \mathbf{m} \geq 0.
On entry, \mathbf{pdv} = \langle value \rangle.
Constraint: \mathbf{pdv} > 0.
```

f08nwc.2 [NP3645/7]

NE_INT_2

```
On entry, \mathbf{pdv} = \langle value \rangle, \mathbf{n} = \langle value \rangle.
Constraint: \mathbf{pdv} \ge \max(1, \mathbf{n}).
On entry, \mathbf{pdv} = \langle value \rangle, \mathbf{m} = \langle value \rangle.
Constraint: \mathbf{pdv} \ge \max(1, \mathbf{m}).
```

NE_INT_3

```
On entry, \mathbf{n} = \langle value \rangle, \mathbf{ilo} = \langle value \rangle, \mathbf{ihi} = \langle value \rangle.
Constraint: if \mathbf{n} > 0, 1 \le \mathbf{ilo} \le \mathbf{ihi} \le \mathbf{n}; if \mathbf{n} = 0, \mathbf{ilo} = 1 and \mathbf{ihi} = 0.
```

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The errors are negligible.

8 Further Comments

The total number of real floating-point operations is approximately proportional to nm.

The real analogue of this function is nag_dgebak (f08njc).

9 Example

See Section 9 of the document for nag zgebal (f08nvc).

[NP3645/7] f08nwc.3 (last)